Page:The Journal of geology (IA journalofgeology11893univ).pdf/70
3. The boulders of this series are much more angular than those of the typical till sheets. Some of them, indeed, are rounded, but the rounding is generally of the type which boulders derived by surface degradation and exfoliation present. They rarely have the forms that are distinctively glacial. Quite a large percentage are notably angular, and have neither suffered glacial rounding nor spherical exfoliation. Some few are glacially worn and scratched, but the percentage of these is small.
The tracts therefore present these four salient characteristics: (1) the boulders are derived from distant crystalline terranes (400 to 500 miles) and are essentially uncommingled with rock from the intervening paleozoic terranes; (2) they are essentially superficial, and the associated earthy material has a texture differing from that of the subglacial tills; (3) they are notably angular and free from glacial abrasion, except in minor degree; (4) the tracts are so associated with terminal moraines and so related to the topography of the region, that there is no rational ground for doubt that the boulders were borne to their present places by the glaciers that produced the correlative moraines.
In contrast to these superficial boulder formations, the till sheets below are made up of a very large percentage of glacial clay whose constitution shows that it was produced in part by the grinding down of the paleozoic series. In this are imbedded boulders and pebbles that were derived from the paleozoic series as indicated by their petrological character, and, in many instances, demonstrated by contained fossils. While a small part of the boulders contained in the till are angular or but slightly worn, the larger part are blunted, bruised, scratched and polished by typical glacial action. This obvious grinding of the boulders, taken in connection with the clay product resulting from the grinding, affords a clear demonstration that the deposit was produced at the base of the ice by its pushing, dragging, rolling action.
The two formations, therefore, stand in sharp contrast; the