Lhermite's models are interesting ways to synthesize various objects that are apparently scattered.
Prime numbers and the model of three arrows
with
and



![{\displaystyle P_{n}=\sum _{i=1}^{2^{n}}\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}{n+1}}\right]\times {\left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}}\right]}\times {i}\times {\left({1-\left[{\frac {\left[({\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]}\right)}\right)}](./a0946b407445219cfc3ec9900eed730007347fb4.svg)
![{\displaystyle P_{n}=\sum _{i=1}^{2^{2^{n}}}\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}{n+1}}\right]\times {\left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}}\right]}\times {i}\times {\left({1-\left[{\frac {\left[({\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]}\right)}\right)}](./52b295c95b44a63a27ae3723067b4a20270c6009.svg)
Red balls and blue balls and prime numbers
Red balls and blue balls and prime numbers according to Wilson's theorem
Prime numbers and the model of three arrows according to Wilson's theorem


in the same way, it is advanced that

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]=1\Leftrightarrow n\in \mathbb {P} }](./99364afae24af599bbe2af20694e8e722372de7d.svg)
It's very evident that

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]=0\Leftrightarrow n\notin \mathbb {P} }](./fa8e6a11d47bf53e58b6509be6603a3ef4fd944c.svg)
Therefore, according to Lhermite's models and Wilson's theorem, there are two evident theorems :

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]-\left[{\frac {1}{n}}\right]=1\Leftrightarrow n\in \mathbb {P} }](./5aaa75d2021b515de6f190709d7959b4d272e958.svg)

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]-\left[{\frac {1}{n}}\right]=0\Leftrightarrow n\notin \mathbb {P} }](./3aa35b931a2af95e1aefb663ba1bf0b280d224fa.svg)
Therefore the following relation becomes true :

![{\displaystyle \left[{\frac {\left[{\frac {\left(n-1\right)!+1}{n}}\right]}{\frac {\left(n-1\right)!+1}{n}}}\right]-\left[{\frac {1}{n}}\right]=1-\left[{\frac {\left[{\frac {\left(n!\right)^{2}}{n^{3}}}\right]}{\frac {\left(n!\right)^{2}}{n^{3}}}}\right]}](./e0435fc2dd31061b79667b73d8f1eef38ecfe00f.svg)
Let's choose one of the formulas that are indicated in the first section :
![{\displaystyle P_{n}=\sum _{i=1}^{2^{2^{n}}}\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}{n+1}}\right]\times {\left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(1-\left[{\frac {\left[{\frac {\left(m!\right)^{2}}{m^{3}}}\right]}{\frac {\left(m!\right)^{2}}{m^{3}}}}\right]\right)}}}\right]}\times {i}\times {\left({1-\left[{\frac {\left[({\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]}\right)}\right)}](./52b295c95b44a63a27ae3723067b4a20270c6009.svg)
let's replace
and
Therefore an equivalent expression is :
![{\displaystyle P_{n}=\sum _{i=1}^{2^{2^{n}}}{\left(\left[{\frac {1+\sum _{m=1}^{i}{\left(\left[{\frac {\left[{\frac {\left(m-1\right)!+1}{m}}\right]}{\frac {\left(m-1\right)!+1}{m}}}\right]-\left[{\frac {1}{m}}\right]\right)}}{n+1}}\right]\times \left[{\frac {n+1}{1+\sum _{m=1}^{i}{\left(\left[{\frac {\left[{\frac {\left(m-1\right)!+1}{m}}\right]}{\frac {\left(m-1\right)!+1}{m}}}\right]-\left[{\frac {1}{m}}\right]\right)}}}\right]\times i\times \left(\left[{\frac {\left[{\frac {\left(i-1\right)!+1}{i}}\right]}{\frac {\left(i-1\right)!+1}{i}}}\right]-\left[{\frac {1}{i}}\right]\right)\right)}}](./ae7912c5604317945c06f2f09f737d60fee1b48a.svg)
Function Ω according to Lhermite's models
![{\displaystyle \Omega \left(n\right)=\sum _{j=1}^{n}\left({\sum _{i=1}^{n}{\left({{\left[{\frac {\left[{\frac {n}{i^{j}}}\right]}{\left({\frac {n}{i^{j}}}\right)}}\right]}\times \left(1-\left[{\frac {\left[{\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]\right)}\right)}}\right)}](./53c13673228cae2bd48a059d1dabd4e167cf7a65.svg)
Liouville's function and Lhermite's models
![{\displaystyle \lambda \left(n\right)=\left(-1\right)^{\left(\sum _{j=1}^{n}\left({\sum _{i=1}^{n}{\left({{\left[{\frac {\left[{\frac {n}{i^{j}}}\right]}{\left({\frac {n}{i^{j}}}\right)}}\right]}\times \left(1-\left[{\frac {\left[{\frac {\left(i!\right)^{2}}{i^{3}}}\right]}{\frac {\left(i!\right)^{2}}{i^{3}}}}\right]\right)}\right)}}\right)\right)}}](./15ebb460496e5b870bf8ba9b0928105acb3fb6e5.svg)
Three Arrows or Jonatan's Arrows
There are three possibilities :
or
or
.
In the same way , there are three possibilities :
or
or
with
References
See also